Comparison of Motion Sickness Incidence (MSI) of three Crew Transfer Vessels with different hull forms

Héloïse Vignal

University Supervisors:

Prof. Zbigniew Sekulski, ZUT Prof. Florin Pacuraru, UGAL

Industrial Supervisor: Michael Luehder, Abeking & Rasmussen

17th February 2014

CONTENTS

- Seasickness phenomenon
 - what is it?
 - How to estimate it?
- Methodology
- SWATH experiments
- Monohull
- Catamaran
- General results & Conclusions

SEASICKNESS PHENOMENON

What?

- Motion sickness phenomena discomfort associated to all mode of transports
- Results in breathing irregularities, warmth, disorientation and vomiting
- Mismatch theory

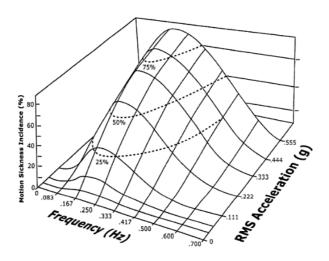
Comparison of motion sickness incidence of three crew transfer vessels with different hull forms

SEASICKNESS PHENOMENOÑ

How?

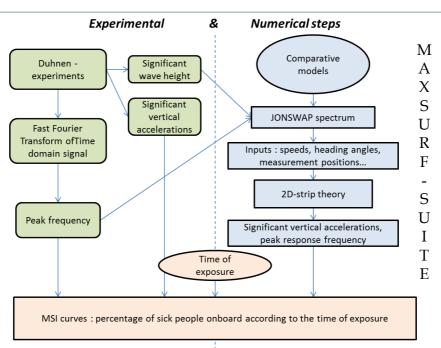
- Motion Sickness Incidence (MSI)
- Algorithm to predict the incidence of motion sickness induced by exposure of vertical sinusoidal accelerations (McCaugley and al. 1976)

$$MSI(\%) = 100 * \Theta(z_a) * \Theta(z_t')$$

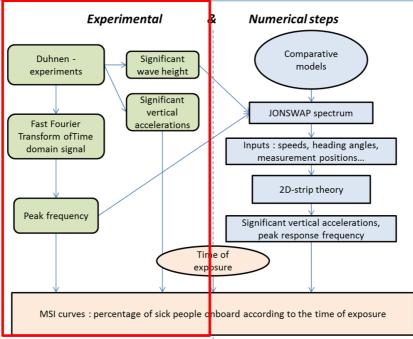

Term depending on significant vertical acceleration and peak frequency response (ship response)

Time dependent term

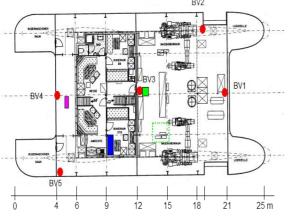
MOTION SICKNESS - HOW?


RMS acceleration: highest one third vertical accelerations of the temporal statement.

Comparison of motion sickness incidence of three crew transfer vessels with different hull forms


METHODOLOGY

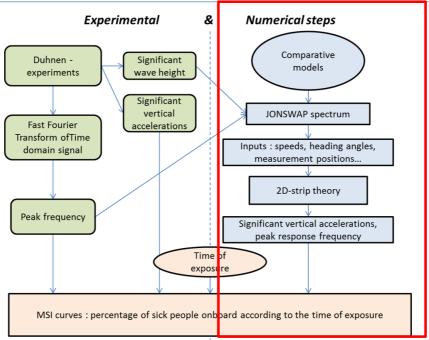
METHODOLOGY



Comparison of motion sickness incidence of three crew transfer vessels with different hull forms

SWATH - DUHNEN

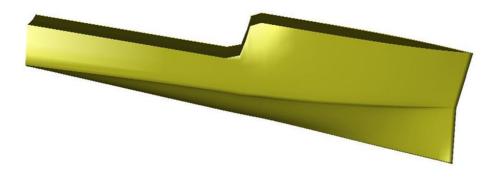
Accelerometers position on the main deck of the *Duhnen*.


Speeds [knots]	Significant wave height [m]	Heading angles [°]
5	2	All (*)
8	2.4	180°
10	2	All (*)
12	1.5	180°
	2.4	180°

^{*} Following seas, Beam seas, Quartering stern and bow seas, Head seas

METHODOLOGY

Comparison of motion sickness incidence of three crew transfer vessels with different hull forms


MONOHULL

MONOHULL - Preliminary design (1)

- Same displacement than the SWATH
- Axe bow hull form seakeeping behaviour
- Rough structural design and weigh estimation vertical position of the centre of gravity



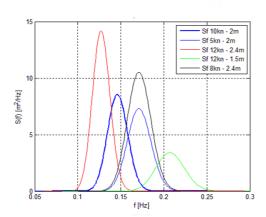
Comparison of motion sickness incidence of three crew transfer vessels with different hull forms

MONOHULL - Preliminary design (2)

	Weight [t]	LCG [m]	TCG [m]	VCG [m]
Lightship	58.42	-3.50	0.00	2.45

+ tank definitions (full load case)

=> VCG = 2.48m


Length overall	32.9 m
Beam overall	6.6 m
Depth at sides	3.3 m
Draught max	2.0 m
Max. speed	29 kn
Main engines	3 x C32 C TTA caterpillar
Crew	6 persons
Industrial personnel	29 persons
Fuel oil	35 m3
Fresh water cargo	25 m3
Sea area (BV classification)	3

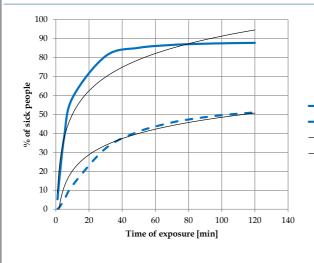
Wave spectra

- JONSWAP spectra used to represent the North Sea.
- · Extracted from experiment results.

• Linear waves theory in deep water, $\lambda \approx 1.56 T^2$.

36 m < Wave length λ < 97 m

Comparison of motion sickness incidence of three crew transfer vessels with different hull forms

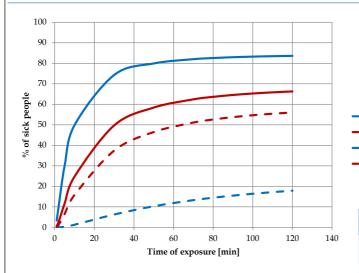

MONOHULL - Results 8 knots

SWATH

MONOHULL

Log. (SWATH)

Log. (MONOHULL)


[min]	SWATH	MONO.
10	12.5%	58.8%
70	45.8%	86.7%
120	50.4%	87.6%

- Head seas
- Wave period 8 seconds
- Worst vertical acceleration locations at stern for SWATH and bow for monohull

MONOHULL - Results 12 knots

	1.5m	2.4m
SWATH	7.9 sec	4.8 sec
Monohull	5.4 sec	2.7 sec

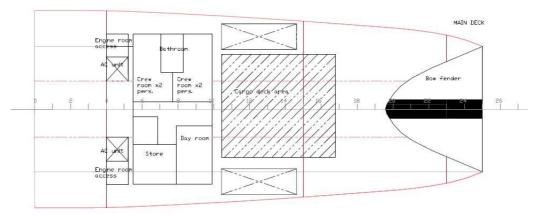
Wave frequency = 5sec

− 1.5 m - SWATH

− 2.4 m - SWATH

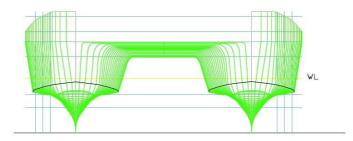
■1.5 m - Monohull ■2.4 m - Monohull

Comparison of motion sickness incidence of three crew transfer vessels with different hull forms


CATAMARAN

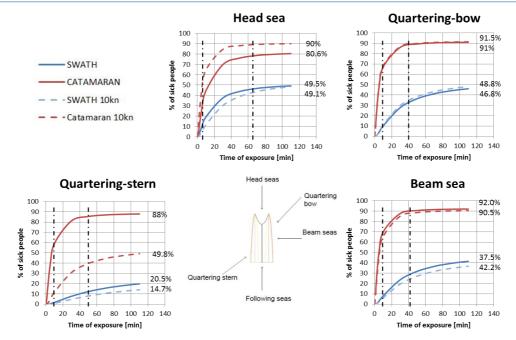
CATAMARAN - Preliminary design (1)

- Same length than the SWATH
- Lightship weight known, 72.8 tonnes
- Preliminary structural design-GL


Comparison of motion sickness incidence of three crew transfer vessels with different hull forms

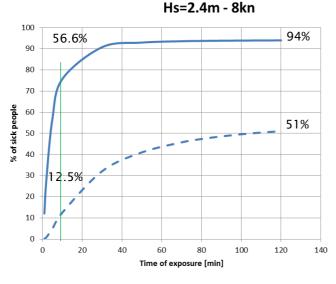
CATAMARAN - Preliminary design (2)

Waterline length	25.0m
Beam overall	13.0m
Maximum draft	2.7m
Max. Speed	18 kn
Full loaded displacement	97.2 t
Spacing of CL demihulls	7.0m



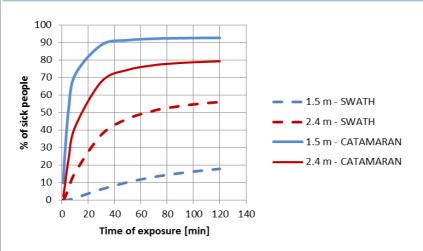
	Go offshore load case					
	Quantity (1=100%)	Unit mass [t]	Total mass [t]	Longitudinal arm [m]	Transversal arm [m]	Vertical arm [m]
Lightship	1	72.800	72.800	11.252	0.000	3.080
FuelS	1	7.106	7.106	15.497	3.379	2.723
FuelP	1	7.106	7.106	15.497	-3.379	2.723
FreshWaterS	1	4.868	4.868	3.502	4.160	2.581
FreshWaterP	1	4.868	4.868	3.502	-4.160	2.581
KeelS	1	0.213	0.213	4.532	-3.500	1.494
KeelP	1	0.213	0.213	4.532	3.500	1.494
Total Loadcase			97.174	11.067	0.000	2.971

CATAMARAN - Results 5&10 knots



Comparison of motion sickness incidence of three crew transfer vessels with different hull forms

CATAMARAN - Results 8 knots


- Higher transversal metacentric height,
- Shorter natural periods of Catamaran

10 minutes	120 minutes
4.5 times sicker	1.8 times sicker

CATAMARAN - Results 12 knots

- Head seas with peak frequency close to 5 seconds.
- Non-linear phenomenon, depends on wave frequency, wave height, speed.

Comparison of motion sickness incidence of three crew transfer vessels with different hull forms

GLOBAL RESULTS

- Twice more people sick on-board of catamaran and monohull than SWATH.
- More sensitive during the first 10 minutes than SWATH.
- Non linear phenomenon (Fp, Hs, U...)
- Speed reduction necessary for comparative ships.

CONCLUSIONS

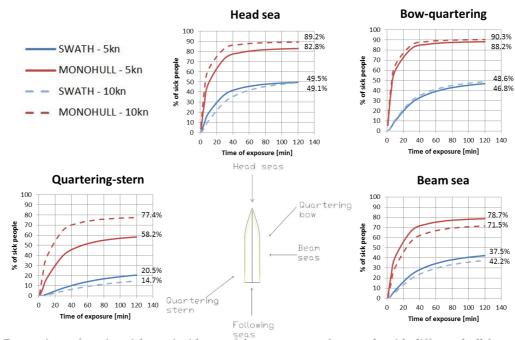
- The purpose of the work has been reached
- Significant peak frequency of ships
- Displacements of catamaran and monohull are different
- Polar plot diagram to optimize the road and speed to reach similar time transfer between comparative ships and SWATH

Comparison of motion sickness incidence of three crew transfer vessels with different hull forms

ADDITIONAL WORK

- Considering more than just significant wave heights, financial impact
- Active stabilisation systems -> impact on pitch & roll gyradius
- Coupling *Seakeeper* with an optimization software

Thank you for your attention, dziękuję bardzo


Szczecin ≈ *chtchétchine* [French pronunciation]

Comparison of motion sickness incidence of three crew transfer vessels with different hull forms

MONOHULL - Results 5&10 knots

